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The hydrodynamic stability is examined of liquids in which the viscosity varies 
with distance below a free surface. It is assumed that the viscosity becomes 
indefinitely large with distance from the surface, and that there is an ‘effective 
depth’ within which most of the motion occurs; but, otherwise, the viscosity 
distribution is arbitrary. The particular cases of wave-generation by a concurrent 
air flow a t  a horizontal liquid surface, and the stability of inclined flow under 
gravity are treated. It is shown that instabilities may occur which are similar 
to those known for thin uniform liquid films. 

1. Introduction 
The hydrodynamic stability of a uniform liquid film, flowing under gravity 

down an inclined plane, has been examined by Benjamin (1957) and Yih (1954, 
1963). Also, Craik (1966) has investigated the stability of a thin uniform liquid 
film on a horizontal boundary, which is exposed to a concurrent air flow. In  
both cases, instability may exist at  rather small liquid Reynolds numbers, and 
the unstable disturbances have wavelengths which are large compared with the 
film thickness. 

The present work is closely related to these investigations, but differs from 
them in that it concerns liquids for which the viscosity varies with distance from 
the free surface. The liquid density, however, is assumed to be constant. The 
depth of the liquid may be taken as infinite, but the viscosity is assumed to 
increase indefinitely with depth. This situation may be regarded as a model of a 
melting surface. 

Although the fluid is not enclosed by a rigid lower boundary, it is generally 
possible to define a length-scale h which, for hydrodynamic purposes, is a measure 
of the ‘effective thickness’ of the liquid layer. Such a length-scale may be speci- 
fied in terms of the distribution of viscosity with depth. If the viscosity becomes 
very large at comparatively small depths-as is usually the case a t  melting 
surfaces-this length-sca,le is small, and the liquid might be expected to behave 
to some extent like a thin film on a rigid boundary. The present work was under- 
taken to discover whether the instabilities which occur in uniform thin films 
may also take place in this situation. Accordingly, two specific problems are 
examined, which respectively concern horizontal flows under the action of an 
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air stream, and flows under gravity with a free surface inclined a t  an angle to the 
horizontal. 

For the primary flow, a Reynolds number R (= pVh/p,,) may be defined in 
terms of the velocity V and viscosity pa at the liquid surface, the liquid density p 
and the ‘effective thickness’ h of the liquid. Also, if the flow experiences a small 
two-dimensional periodic disturbance of wave-number k ,  an appropriate dimen- 
sionless wave-number is a 3 kh. As in the previous work on uniform films, ap- 
proximate solutions to the stability problem may be obtained when a2 and aR 
are small. However, the variation of viscosity with depth now makes the analysis 
more complicated. 

Here it is assumed that the viscosity of each element of the liquid remains 
constant throughout its motion: that is, 

Dp/Dt’ = 0,  (1.1) 

where p(x‘, t ’ )  is the viscosity at  position x’ and time t ’ ,  and D/Dt’ denotes the 
material time derivative. This equation is exact provided the viscosity distri- 
bution is not subject to diffusion. However, in practice, variations in viscosity 
are normally due to variations in temperature; and diffusion of heat may pro- 
duce a corresponding diffusion of viscosity. In  such cases, equation (1.1) is an 
approximation which is likely t o  be valid only when the thermal diffusivity K of 
the liquid is sufficiently small. More precisely, when a2 is small, (1.1) may be a 
good approximation provided 

aRPr 3 1, 

where Pr E p o / p  is the Prandtl number. Since aR will be taken as O(1) or less 
in the present work, it is clearly necessary that the Prandtl number of the 
material in question should be large. (This condition appears to be well satisfied, 
for example, by molten metals and glass.) Restrictions similar to that above 
exist for other diffusive agents, such as molecular diffusion. 

A further qualification concerning (1.1) must be made. If a small two-dimen- 
sional wavelike disturbance propagates with a velocity cf which satisfies the 
inequality 0 < c‘ < V ,  the linearized form of (1.1) may yield a singularity at the 
‘ critical layer ’ where the liquid velocity equaIs c’. Such disturbances are outside 
the scope of the present analysis, but have been discussed previously by Lees 
& Lin (1946) and are also the subject of a future paper by Craik. Here, as for 
uniform films, it is found that the velocity cf of surface waves satisfies the con- 
dition cf > V ,  and the question of a singularity does not arise for these waves. 
However, the possibility of other wave modes with 0 < cf < V is not discounted: 
if, for example, the viscosity distribution possesses a near-discontinuity at some 
depth, ‘internal’ instabilities similar to those discussed by Yih (1967) may 
arise. 

The assumption of constant density is also an approximation if temperature 
varies within the liquid. However, in the context of the present work, this is not 
a serious restriction. The major role of gravity is that due to the large density 
discontinuity at  the liquid surface; and, provided the liquid remains stably 
stratified, comparatively small changes in density within the liquid are unlikely 
to be important for the waves under discussion. 
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Semenov (1964) has considered the stability of a horizontal flow in which 
viscosity increases exponentially with depth below the mean liquid surface, 
and where the motion is due to a constant tangential stress exerted at  the liquid 
surface. He regards the viscosity as remaining constant in horizontal planes, 
even when the flow is given a small perturbation. In  contrast, through (l.l),  
the present work takes into account the fluctuations of viscosity at  a given loca- 
tion, which are due to the perturbed motion. Further, Semenov’s model is not 
suitable for an examination of wind-generated waves, since it does not adequately 
incorporate the periodic stresses at  the air-liquid interface which arise due to 
interaction of the air flow and the perturbed liquid surface. Such stress pertur- 
bations are included in the present analysis in the same manner as was employed 
by Craik (1966, 1968): the stresses are represented by suitable parameters and 
appropriate estimates for these may be substituted if desired. 

Drazin (1962) has discussed the stability of parallel flows with variable vis- 
cosity and density, mainly at  large Reynolds numbers. Some aspects of this work 
-particularly the initial formulation of the stability problem-are relevant to 
the present investigation, and these are mentioned later. 

The manner in which viscosity varies with depth in the unperturbed flow need 
not be precisely specified. It is only necessary that the viscosity becomes suffici- 
ently large with depth to ensure that most of the motion takes place in a fairly 
thin layer near the surface. The problem concerning wind-generated waves on a 
horizontal surface is solved for an arbitrary distribution of viscosity; and a 
convenient expression for the ‘effective depth’ h is found, which makes the 
stability criterion identical to that for a uniform film of thickness h. Also, for 
inclined flow under gravity, the analysis is pursued to a stage at which elementary 
numericaI techniques may be employed to yield results for any specified viscosity 
distribution. Such results are presented for the particular case in which viscosity 
increases exponentially with depth. 

The analyses may easily be extended to include the effects of surface con- 
tamination, as was done for uniform films by Benjamin (1963) and Craik (1968). 
However, this extension is quite straightforward, and is not worth including here. 
A further obvious extension is to cases in which the gravitational body force is 
replaced by an accelerating or decelerating frame of reference. 

2. The basic equations 
It is convenient to introduce dimensionless variables defined relative to the 

velocity V of the liquid surface, the constant density p of the liquid, and the 
length-scale h which is as yet unspecified, but which is a measure of the ‘effective 
thickness ’ of the liquid layer. Dimensionless co-ordinates (x, y) are chosen such 
that the primary flow is in the x-direction, and y denotes the depth below the 
undisturbed free surface. The Reynolds number R equals pVh/,uo where ,uo is the 
(constant) viscosity of particles comprising the liquid surface, and a ‘dimension- 
less viscosity’ m is defined as 

A sketch of this configuration is shown in figure 1. 

m = P.(Z, Y ,  WPO. 
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We denote the dimensionless pressure by p ,  and the dimensionless components 
of velocity and body force in the (x, 9)-directions by (u, w) and (G sin 8, G cos 8) 
respectively. Here, G = gh/V2, where g is gravitational acceleration, and 8 is 
the angle of inclination of the primary flow to the horizontal. 

FIGURE 1. Sketch of flow configuration. 

In  the absence of any pressure gradient in the direction of motion, the primary 
flow is specified by 

where (?%if)’ = - GR sin 8, p’ = G cos 8, (2 . la ,  b)  

and the prime denotes differentiation with respect to y. The viscosity distribu- 
tion ~ ( y )  may be regarded as a given property of the liquid, which satisfies the 
conditions 

and the corresponding velocity profile Z(y) may be derived from equation (2.1 a )  
and the boundary conditions 

u = U(y) ,  2, = 0, m = rn(y), p = P(y), 

E(0) = 1, rn(oo) = 00; 

U ( 0 )  = I ,  U(m) = 0. 

Also, if the liquid surface experiences a mean dimensional shear stress ro, we 
require that 

and this additional boundary condition yields an expression for the surface 
velocity V in terms of the other flow quantities. 

(2-2) U’(0)  = - R ( . r o / p V ) ,  

3. The stability problem 
We now consider that the primary flow experiences a small two-dimensional 

disturbance which is periodic in the x-direction. (The extension of the analysis 
to three-dimensional periodic disturbances may be effected by Squire’s trans- 
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formation: see Yih 1955). The normal displacement of the liquid surface is 
represented by 

where a is the (real) dimensionless wave-number and c the dimensionless wave 
velocity, which may be complex. The wave amplitude is assumed to be sufficiently 
small for the problem to be linearized. 

Continuity considerations permit the introduction of a perturbation stream 
function 

y = ~ ( x ,  t) = SeWr-cl), 

11.h Y7 t) = f (Y)V(X, t ) ,  

such that the velocity components are 

(3.la) 

(3 . lb)  

Also, the dimensionless pressure and viscosity are of the form 

P = F(Y)+fj(Y)T, 
m = m ( y ) + & ( y ) ~ .  

then yield the linearized results (cf. Drazin 1962) 
The Navier-Stokes equations (with viscosity variation) together with (1.1) 

@ = U‘f -  (U-c)fl+(i~1~)-~{-2~~%f’+[E(f”-~~f)+&U’]’}, ( 3 . 2 ~ )  

iaR[(5 - c) (f” - ay) - U ” f ]  = m( f iv - 2 a y  + ay) + 2rn’(f”l -a?’) 

+%”(f”+a2f) +&(~”+“61’)+2&’U’‘+&’’U’, (3.2b) 

(U - c)& = my. (3.2~) 

We note that, when E ( y )  = 1, the above equations are those for a homogeneous 
liquid. In  particular, (3.2 b) reduces to the Om-Sommerfeld equation. 

The boundary conditions at y = co are 

f ( c o )  =f ‘ (m) = 0. (3 .3a,  b) 

(If the flow is bounded by a rigid plane at  some finite depth H ,  it is only 
necessary to let E(y)  become infinite for all y 3 H . )  At the liquid surface, there 
are three boundary conditions: two of these derive from the normal and tangential 
stress conditions at  the surface, and the third is the linearized kinematic con- 
dition relating v and the surface displacement 7. This last is 

or 

w = Dy/Dt (y = O ) ,  

f ( 0 )  = c- 1. (3.4) 

The dimensionless normal and tangential stress perturbations exerted by an air 
stream on the perturbed liquid surface are of the form 

a;Jy = - HV, vxll = C% (3.5a, b) 

where II and C are generally complex. The quantities II and C depend on the 
properties of the air flow and the surface disturbance; but, for present purposes, 
it is convenient to regard them as complex parameters, the values of which may 
be estimated in particular cases (cf. Craik 1966, where the parameters II and C 
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are the same as those defined above. The additional minus sign in (3.Sa) arises 
since the direction of the y-axis is opposite to  that employed by Craik.) 

The requirement that capillary pressure and the normal stresses on either side 
of the liquid surface should be in equilibrium yields the linearized boundary 
condition 

where @(O) is given by result (3.3a), where T = y(phV2)-l, and y is the coefficient 
of surface tension a t  the liquid surface. 

To linearized approximation, the tangential-stress perturbation just inside 
the liquid surface is found to be 

- @ ( O )  - 2iaR-lf’(O) = (G cos 8 - n +  a2T),  (3.6) 

Ti = R-l[(mu’)’+~u1+m(f”+a2f)]~ (y = 0); 

and the condition that this equals the tangential-stress perturbation B , ~  exerted 
by the air flow leads to  the boundary condition 

f ” (0)  + [(G“(O) -RE) (c - 1)-1+ a”f(0) = 0, (3.7) 

on using results (3.2c), (3.4) and (3.56). 
The linearized characteristic-value problem is now completely specified by 

the equations (3.2a, b, c) together with the five boundary conditions (3.3u, b) ,  
(3.4), (3.6) and (3.7). Its  solution yields an eigenvalue equation for the complex 
wave velocity c in terms of a and the other parameters of the problem. 

4. The long-wave approximation 
At this stage, it is convenient to  introduce some approximations which are 

similar to those made in the analogous work on uniform films. We assume that 

a2 < 1, aR,aRlcl -g 1 (4.la, b) 

(though, in 9 6, it is suggested that the conditions (4.1 b)  mag be relaxed some- 
what). These conditions require that the wavelength of the disturbance is large 
compared with the ‘effective depth’ h, and that, in the equations of motion, the 
inertia terms are small compared with the viscous terms. A first approximation 
to  ( 3 . 2 b )  is t)hen 

On integrating twice and using result (3.3c), this becomes 

( % f ” + U G ) ”  = 0. 

- Elm’ 
I n ,  + ~ f = Ay+B, (U - C) 

where A and B are constants of integration which may be determined from the 
boundary conditions. The corresponding approximations to the boundary con- 
ditions (3.6) and (3.7) are 

= - iaR(G‘c0s B - IT + a2T) (y = O), 

f” = RC - U” (y = o ) ,  
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where results ( 3 . 2 ~ )  and (3.4) have been used. Note that, although a2 and aR are 
small, the term on the right-hand side of the former boundary condition must be 
retained, since the parameters G, II and T may be large. It follows from these 
boundary conditions that the constants A and B are 

A = -iccR(Gcos8-II+a2T), (4.3a) 
B = EX - [ ( ~ i i l ’ ) ’ ] , = ~  = EX + RGsin 8. (4.3 b)  

With these values, it remains to solve (4.2) subject to the boundary conditions 
(3.3a, b)  and (3.4). This is done for two problems: namely, the onset of wind- 
generated waves on horizontal flows and the stability of inclined flows under 
gravity. The solution to the former problem yields the stability criterion to good 
approximation; but, for the latter, a better approximation is required, which 
incorporates the highest-order inertia terms from the equations of motion. 

An equation similar to (4.2), but with A = B = 0, is discussed by Drazin. Two 
linearly independent solutions of this equation may be expressed as series of 
multiple integrals; but these are not required in the present work. Drazin also 
noted that the equation has a simple solution when EU‘ is constant; and this 
case is examined in the next section. 

5. Wind-generated waves on a horizontal flow 
If the primary flow is horizontal, 8 = 0 and the motion is entirely due to the 

mean tangential stress 70 exerted by the air flow at the liquid surface. Then, from 

where D is a constant. For this case 
results (2.1) and (2.2)) % ~ t  = - ~ ( T ~ / p p )  D, (5.1) 

U“ -- - -~ E’U’ 
- m(U-c) ‘Id-c’ 

Ul(U - c) 
(1C-c)fn-Ullf= ~ (Ay+B)  = F(y). D 

and equation (4.2) becomes 

First and second integrals of this equation, which satisfy the boundary con- 
ditions (3.3a, b) ,  are 

(U-C)fl-iilZLlf= - 

P m  r m  

The latter expression, together with the remaining boundary condition (3.4)) 
yields 

and integrations by parts lead to the result 

Jom(U-c)-2dy F(y,)dy, = - 1, Lm 
AI, + B1, = 2 0 ,  (5.2) 

where Il(c) = Jom (iil - c ) - ~  (IIm [( i i l- c)2- c2] dy, - y [ ( ~  - c)2- c2] dy, I 
12(c) = (U - c ) - ~  [(U - c ) ~  - c2] dy . Soa 
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Since A ,  B and D are known, and U(y) may be found for each prescribed viscosity 
distribution %(y), the complex wave velocity c may be determined from this 
equation. From now on, it will be convenient to denote the real and imaginary 
parts of complex quantities by the subscripts r and i. 

It is of primary interest to determine the conditions for neutral stability, when 
c is real. However, if c is real and less than unity, the integrals Il and I, are singular 
at  y = yc, where U(yc) = c.  As mentioned in the introduction, this possibility is 
not dealt with here: instead attention is restricted to those disturbances with 
c, > 1, for which I, and I, are real when c, = 0. 

When ci = 0 ,  the real and imaginary components of (5.2) become 

(5.3a, b )  

where the subscripts denote real and imaginary parts. 
Particular estimates for II and E, which derive from earlier work of Benjamin 

(1959), are given by Craik (1966), where their range of validity is also discussed. 
Here, we need only mention that BlCl and aRITIiI are typically small compared 
with unity, that IIi is negative and that II,, E,. and Ei are positive. In  the following 
it is therefore permissible to assume that 

R l q ,  a q q  < 1, (5.5a, b )  

as was done by Craik (1966). These assumptions again enable a simple solution 
to be found. 

With these assumptions, [ A r /  and lB,l are small compared with unity; whereas, 
with an appropriate choice of length scale h, the value of ID1 is O(1). Therefore, if 
(5.3a) is to be satisfied, either I, or I, must be large compared with unity. 
However, for disturbances with c, > 1, it is easily verified that the magnitudes 
of II  and I,  are O(1) except when c, is close to unity. (It should be recalled that, 
with an appropriate length-scale h, U is very small for depths y greater than 
O(l) ,  due to the large values of the viscosity there: the main contributions to 
the integrals I, and I, then derive from a layer near the surface whose dimension- 
less depth is O( l).) If c, = 1 + 8,  say, where E is a small positive quantity, the inte- 
grands become very large near y = 0,  and their contributions to I, and I, are 
correspondingly increa.sed. Therefore, in order that I ,  or I, may be sufficiently 
large to satisfy equation (5.3a),  it  is necessary that c, 1: 1 + . This is similar to the 
corresponding result for uniform thin films (see Craik 1966, equation (7.2)) that 
the phase velocity of infinitesimal waves is nearly equal to the velocity of the 
liquid surface. 

This result enables simplification of (5.3b). On writing c = c, = 1 + E in Il and 
I,, and examining the contributions to these integrals from the vicinity of y = 0, 
it  is easily verified that 

1 
1,(1+e)  = :---- Z(2-U)dy+O(loge), 1 2 ( l + s )  = v + O ( l ) .  

u ' (0 )e  lm 0 u'(0)s 
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On retaining only the highest-order terms in e, equations (5 .3b)  and (5.4) yield 
the result 

( G - I I ~ + 1 ~ T ) / ~ ~ u ( 3 - r ) d y  = &/a, 

which represents, to good approximation, the condition for neutral stability. In  
terms of dimensional quantities, it becomes 

(5 .6)  

where P, and are dimensional stress parameters defined as 

p,  = (p  YZh-1) II,, q = (p YZh-1) xi, 

and V(y’) denotes the dimensional primary velocity profile as a function of the 
actual depth y’. 

The corresponding result for a uniform film of thickness h is (Craik 1966, 
equation (7.1 b ) )  

and this may be recovered from (5.6) by setting 
(5.7) pg - P, + kL/ = $(kh)-lT,, 

u = V(1-y‘/h) (0 < y‘ < h) ,  u = 0 (y’ > h).  

The similarity between results (5.6) and (5.7) permits a very convenient de- 
finition of the ‘effective depth’ h of liquids with viscosity stratification (up till 
now, h has not been precisely defined). For, if h is taken to be 

these equations become identical. Then, the criterion for neutral stability with 
viscosity stratification is precisely the same as that for uniform films. 

When c, is non-zero, but is sufficiently small that 

lei[ < [cr-1[,  1, 

an analysis similar to that above yields the approximate result 

CCRC~ = & ( a ~ ) 2  ( C J ~ )  - (G - IT, + a 2 ~ )  lom (z - a)zay]. [ 
With the above choice of h, this equation is also identical to the corresponding 
result (Craik 1966, equation (7.3)) for uniform films. 

It is clear that all the results obtained by Craik (1966) for uniform films are 
directly applicable to the present situation. Accordingly, further details need 
not be presented here: instead, the reader is referred to $57-10 of Craik’s paper, 
which examine the neutral case, the stability curves and the range of validity of 
the approximations. Also, following Craik (1968), the above analysis may easily 
be extended to include the effects of contamination by insoluble surface-active 
agents, which are often significant in practice. 

Finally, it should be recalled that the stability criterion examined here refers 
only to ‘surface-wave ’ modes. As mentioned in the introduction, there remains 
the possibility of unstable ‘internal-wave’ modes with 0 < c, < 1, similar to 
those examined by Yih (1967) for two superposed liquid layers. 

26 Fluid Mech. 34 
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6. Inclined flow under gravity 
We now consider cases where the primary flow is entirely due to the body 

force component G sin 8 in the direction of motion. Since the air flow is absent, 
the mean shear stress T~ and the stress perturbations gUU and gzy are zero. From 
results ( 2 . 1 ~ )  and (2.2), 

%E’ = -GRsinOy, 

E’E‘ (E’/y) - U“ 
% ( U - c )  u-c * 

-- - and 

Equation (4.2) is therefore 

-@’lY) (Ay+B), 
f” + (-..- u ’ / y )  - E“ 

u-c f = m e  
and the appropriate values of A and B are, from (4,3a, b) ,  

A = -iaR(GcosB+a2T), B = RGsin0. 

We now require the solution f (y) and the wave velocity c which satisfy equation 
(6.1) and the boundary conditions (3.3a, b )  and (3.4), for a prescribed velocity 
profile E ( y ) .  

For the present problem, the depth scale h is not yet precisely defined. Without 
loss of generality, it  may be chosen such that 

RGsin8 = 1. (6.2) 

It follows that B may be taken as unity in (6.1); this step being equivalent to 
defining the depth scale h to be (p0 V/pg sin 8)4. 

When a is sufficiently small, I A I is small compared with 1 B( , and a first approxi- 
mation to (6.1)-which is itself an approximation to (3.2b)-may be obtained on 
setting A equal to zero. Denoting the approximate solution by the subscript 
zero, we require to find fJy) and co which satisfy the equation 

and the boundary conditions 

fOC..) = fo”..) = 0, fO(0) = co - 1. 

The associated viscosity variation h0(y) is obtained from (3 .2~)  as 

h myo (U”y - U’) 
mo(y) = -- = S O .  u - c o  ;li’2(U-co) 

For prescribed values of E ( y ) ,  the appropriate solutions forfo(y) and co may be 
obtained numerically, using an iteration procedure. To this approximation, co 
is real and the solution represents a neutrally stable wave. 

In  order to derive the stability criterion, second order approximations for 
f(y) and c are required. For this, the term in A and the highesborder inertia terms 
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must be included in the analysis. The inclusion of the latter requires that we 
return to (3.2). Following Yih (1963), we write 

These expressions may be regarded as the leading terms of a power-series ex- 
pansion in terms of the small parameters aR and a2, when a2 is also small com- 
pared with aR. Retaining only those terms of (3.2b) which are O(aR), we find 
that (af; + U’h”’ = (U - c0)C - U’yo, (6.6) 

,. my1 myoc, 
m, = ---+ -~ 

u - co (U - co)2’ 

First and second integrals of (6.6) are 

(af; + U‘Li,)’ = (U - c0)fh - zy0 + c, 

where C and D are disposable constants. To the same order of approximation, 
the boundary conditions (3.6), (3.7) and (3.4) yield 

(??if; + U’kl ) ’  = ( 1  - c0) f A + G cos 8 + a2T (y = O), 
- 1 ’  - A  

Mf,+ u’m, = 0 (y = O ) ,  

f, = c1 (y = 0). 

The first two of these boundary conditions, together with (6.8) and (6.9), de- 
termine C and D to be 

C = Gcosi3+a2T, D = 0. 

On substituting in (6.9) for C, D, E and hl we obtain 

(U’/y) - U” - ] f o - ( i i ’ / y ) l - ~ ‘ ( G c o s ~ + a ~ T ) ,  (6.10) 
u - co)2 

where 

I = 1; [(U - co)fk - it yo] dy, = (U - co) fo + (1  - co)2 - 2 IOU Uyodyl ,  (6.11) 

on integration by parts. Also, from (6.3), 

(U - co)yf; + (U’ -YE’’) fo = - U’(U - co); 

and this equation may be integrated from 0 to y, to find, after integration by 
parts, that 

On using results (6.11) and (6.12), equation (6.10) becomes 

- cl{ (U”y) - F} fo - U‘ (G cos 0 + a2T) + H (  y ) , ( 6.1 3) 
U-Co  (U - Go) 

where H ( y )  = - Q(U’/y) [(U - co - 2U’y) fo + 2 ( ~  - co) yf; + (U - co)2].  

26-2 
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In  addition, fl(y) and c1 must be such that the boundary conditions 
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f l ( 4  =f;(a) = 0, fi(0) = c1 (6.14) 
are satisfied. 

FIGURE 2. The funct>ionsf,(y) and lOf,(y) for the viscosity distribution m(y)  = ey. 

With a given dimensionless velocity profile Q(y), the first approximations 
c,, and fo(y) may be calculated numerically from (6.3), as mentioned above. 
When these are known, a similar iterative procedure yields solutions cl, fl(y) to 
the above problem, which correspond to chosen values of the parameter 

(G cos 13 + a?!”). 

It is clear that c1 must be real; and, since the imaginary part of the wave velocity 
c is iaRc,, the sign of c1 determines whether the wave is stable or unstable. 

Such calculations have been carried out for the particular velocity profile 

U ( y )  = (1 + y) e-y, (6.15) 

which is found, from the work of $ 2 ,  to occur in the interesting case where the 
viscosity increases exponentially with depth. The corresponding dimensional 
and dimensionless viscosity distributions are 

,u(y’) = ,uoev’’h, %(y) = ev (y,y’ 2 0). 

(It may be verified that the constant h used here is such that condition (6.2) is 
satisfied.) The value of c,, was found to be 

c0 = 1.81, 
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which represents a neutral wave travelling with a velocity somewhat less than 
twice that of the liquid surface. This contrasts with the result of Benjamin and 
Yih for a uniform film, that the wave velocity is just twice that of the liquid 
surface. The solutionf,(y) is shown in figure 2. 

0.25 - 
- 0.25 0 

-0.25 

-0.5 

-0.75 

G cos O+ Tn2 . 
0.2: 0.5 675 

FIGURE 3. Curve of cl( = e,/aR) against, ( G  cos 8 +!Pa2) for the viscosity distribution 
E ( y )  = eu. 

In  the next approximation, values of c1 were found which correspond to several 
chosen values of (G cos 8 + a2T). These results are shown in figure 3. The curve 
of c1 against (Gcos8+a2T) resembles a straight line, but no satisfactory ex- 
planation for this has been found. A disturbance of wave-number a is stable or 
unstable according as (G cos 8 + a2T) is greater or less than 0.295. The function 
f,(y) corresponding to the neutral case c1 = 0 is shown in figure 2. In the range 
0 < y < 2, where most of the motion takes place, Jfl(y)) is considerably smaller 
than I f,,(y)I, and the same is true of their first derivatives. This fact suggests that 
condition (4.1 b )  may be unnecessarily severe, and that the present approximate 
theory may hold for all values of aR less than O( 1). 

When ~ ~ 0 s  e 0.295, 

R > 3 a c o t e .  

very long waves (a+ 0 )  are unstable. Also, on using result (6.2), this instability 
condition becomes 

Now, for the velocity profile (6.15), the volumetric flow rate per unit span Q is 
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therefore, in terms of &, the instability condition is 

Alex D .  D.  CraiE and F .  I .  P. Smith 

(p/p,) & > 6.78 cot 8. (6.16) 

This may be compared with the result 

Wpu) Q > P cot 8, 

which was found for uniform films by Benjamin and Yih. Once again, instability 
is predicted whenever the liquid surface is vertical, for cot 8 is then zero. For 
8 < go", the flow is stable provided Q is sufficiently small, but instability occurs 
when Q is large enough to satisfy condition (6.16). 

The above analysis may readily be extended to include the effects of surface 
contamination, by following the method of Benjamin (1963). It is clear that the 
instability examined above is very similar to that occurring in uniform films, 
and further discussion is therefore unnecessary. 

Part of this work was performed while one of us (P.S.) was the recipient of an 
S.R.C. research studentship. The computations were carried out on the IBM 1620 
computer of the University of St Andrews. 
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